Totai number of printed pages-11
3 (Sem-1/CBCS) MAT HC2

2021

(Held in 2022)

MATHEMATICS

(Honours)
Paper : MAT-HC-1026

(Algebra)

Full Marks : 80
Time : Three hours
The figures in the margin indicate full marks for the questions.

1. Answer the following as directed :
$1 \times 10=10$
(a) Find the polar representation of $z=2 i$.
(b) If $x=0$ and $y>0$, then what is the value of t^{*} ?
(c) Write the negation of the statement 'For any integer $n, n^{2}>n^{\prime}$ in plain English then formulate the negation using set of context and quantifier.
(d) Disapprove the statement using counter example :
"For any $x, y \in \mathbb{R}, x^{2}=y^{2}$ implies $x=y$."
(e) Suppose f is a constant function from X to Y. The inverse image of a subset of Y cannot be
(i) an empty set
(ii) the whole set X
(iii) a non-empty proper subset of X
(Choose the correct option)
(f) Let $X=Y=\mathbb{R}$. Let $A \subseteq X, B \subseteq Y$. Draw the picture for $A \times B$ where $A=[-1,1]$ and $B=[2,3]$.
(g) Suppose a system of linear equations in echelon form has a 3×5 augmented matrix whose fifth column is a pivot column.
Is the system consistent? Justify.
(h) If a set $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ in \mathbb{R}^{n} contains the \vec{O} vector, is the set linearly independent? Justify.
(i) If $A=\left[\begin{array}{rr}1 & -3 \\ -2 & 4\end{array}\right] \quad \vec{x}=\left[\begin{array}{l}5 \\ 3\end{array}\right]$, compute $(A \vec{x})^{T}$.
(j) What is the determinant of an $n \times n$ elementary matrix E that has been scaled by 7 .
2. Answer the following questions : $2 \times 5=10$
(a) If $z=-2 \sqrt{3}-2 i$, find the polar radius and polar argument of z.
(b) Is the function $g: \mathbb{R} \rightarrow \mathbb{R}$ given by $g(x)=|x-2|$ one-one and onto? Explain.
(c) Let universal set be \mathbb{R} and index set be
\mathbb{N}. For a natural number $n, J_{n}=\left(0, \frac{1}{n}\right)$.
Identify with justification $\bigcap_{n \in N} J_{n}$.
(d) Show that T is a linear transformation by finding a matrix that implements the mapping
$T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(0, x_{1}+x_{2}, x_{2}+x_{3}, x_{3}+x_{4}\right)$
(e) A is a 2×4 matrix with two pivot positions. Answer the following with justification
(i) Does $A \vec{x}=\overrightarrow{0}$ have a non-trivial solution?
(ii) Does $A \vec{x}=\vec{b}$ have at least one solution for every \vec{b} ?
3. Answer any four questions from the following:
$5 \times 4=20$
(a) Find the polar representation of the complex number
$z=1-\cos a+i \sin a \quad a \in[0,2 \pi)$.
(b) Let A and B be subsets of an universal set U. Prove -
(i) $(A \cap B)^{C}=A^{C} \cup B^{C}$
(ii) $\quad(A \cup B)^{C}=A^{C} \cap B^{C}$
(c) Define bijection.

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be $f(m)=m-1$, if m is even $f(m)=m+1$, if m is odd. Show f is a bijection and $f^{-1}=f . \quad 1+4=5$
(d) For vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p} \in \mathbb{R}^{n}$ define span $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots ., \vec{v}_{p}\right\}$ construct a 3×3 matrix A with non-zero elements and a vector \vec{b} on \mathbb{R}^{3} such that \vec{b} is not in the set spanned by the columns of A.
(e) Alka-Seltzer contains sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$ and citric acid $\left(\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)$. When a tablet is dissolved in water the following reaction produces sodium citrate, water and carbon dioxide :
$\mathrm{NaHCO}_{3}+\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \rightarrow \mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ Balance the chemical equation using vector equation approach.
(f) Prove that an $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}, and in this case any sequence of elementary row operations that reduces A to I_{n} also transforms I_{n} into A^{-1}.
4. Answer any four from the following :
(a) (i) Find the cube roots of the number $z=1+i$ and represent them in the complex plane.
(ii) Find the number of ordered pairs (a, b) of real numbers such that $(a+i b)^{2002}=a-i b$.
(iii) If x, y, z be real numbers such that $\sin x+\sin y+\sin z=0$ and $\cos x+\cos y+\cos z=0$, prove that $\sin 2 x+\sin 2 y+\sin 2 z=0$ and $\cos 2 x+\cos 2 y+\cos 2 z=0$
(b) (i) Solve the equation
$z^{7}-2 i z^{4}-i z^{3}-2=0$.
(ii) Find the inverse of the matrix if it exists by performing suitable row operations on the augmented matrix $[A: I]$ $A=\left[\begin{array}{rrr}1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4\end{array}\right]$
(c)
(i) If $f: X \rightarrow Y$ be a map and $B \subseteq Y$, then prove $f^{-1}\left(B^{C}\right)=\left(f^{-1}(B)\right)^{C}$.
(ii) $A_{n}=\left(-\frac{1}{n}, \frac{1}{n}\right)$, where $n \in \mathbb{N}$. Find $\bigcup_{n \in N} A_{n}$ and $\bigcap_{n \in N} A_{n}$
(iii) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{2}$.

Find $f^{-1}(1), f^{-1}(-1), f^{-1}([0,1])$.
(i) State the induction principle and use it to show that for any positive integer $1+2+3+\ldots+n=\frac{n(n+1)}{2}$.
(ii) Write as an implication 'square of an even number is divisible by 4 '. Then use direct proof to prove it.
(iii) Give proof using contrapositive 'For an integer x if $x^{2}-6 x+5$ is even, then x is odd':
(i) Use the invertible matrix theorem to decide if A is invertible

$$
A=\left[\begin{array}{rrr}
1 & 0 & 2 \tag{2}\\
3 & 1 & 2 \\
-5 & -1 & 9
\end{array}\right]
$$

(ii) Compute $\operatorname{det} A$ where

$$
A=\left[\begin{array}{rrrr}
2 & -8 & 6 & 8 \\
3 & -9 & 5 & 10 \\
-3 & 0 & 1 & -2 \\
1 & -4 & 0 & 6
\end{array}\right]
$$

(iii) What do you mean by equivalence class for an equivalence relation? For the relation $a \equiv b \bmod (5)$ on z, find all the distinct equivalence classes of z
(f) (i)
(i) Solve the system of equations

$$
\begin{aligned}
x_{1}-3 x_{3} & =8 \\
2 x_{1}+2 x_{2}+9 x_{3} & =7 \\
x_{2}+5 x_{3} & =-2
\end{aligned}
$$

(ii) Choose h and k such that the system has
(a) no solution
(b) a unique solution
(c) many solutions

$$
x_{1}+h x_{2}=2
$$

$$
4 x_{1}+8 x_{2}=k
$$

(iii) Write the general solution of $10 x_{1}-3 x_{2}-2 x_{3}=7$ in parametric vector form.
(g)
(i) Prove that the indexed set $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent and $\vec{v}_{1} \neq \overrightarrow{0}$, then some \vec{v}_{j} (with $j>1$) is a linear combination of the preceding vectors $\bar{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{j-1} \ldots$

Use Cramer's rule to compute the solutions of the system

$$
\begin{aligned}
-5 x_{1}+3 x_{2} & =9 \\
3 x_{1}-x_{2} & =-5
\end{aligned}
$$

(iii) Suppose $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$
and $T(\vec{x})=A \vec{x}$ for some matrix
A and each \vec{x} in \mathbb{R}^{5}
How many rows and columns does A have? Justify. 2
(i) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the
transformation that rotates each point in \mathbb{R}^{2} about the origin through an angle ϕ with the counter-clockwise direction taken as positive. Find the standard matrix for this transformation.
(ii) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation.
Prove that T is one-to-one if and only if the equation $T(\vec{x})=\overrightarrow{0}$ has only the trivial solution.
(iii) Find the area of the parallelogram whose vertices are $(0,-2),(6,-1)$, $(-3,1)$ and $(3,2)$

