Total number of printed pages-11

3 (Sem-1/CBCS) MAT HC2

2021 (Held in 2022)

MATHEMATICS

(Honours)

Paper : MAT-HC-1026

(Algebra)

Full Marks : 80

Time : Three hours

## The figures in the margin indicate full marks for the questions.

- - (a) Find the polar representation of z = 2i.
  - (b) If x = 0 and y > 0, then what is the value of t\*?
  - (c) Write the negation of the statement 'For any integer n,  $n^2 > n'$  in plain English then formulate the negation using set of context and quantifier.



(d) Disapprove the statement using counter example :

"For any  $x, y \in \mathbb{R}, x^2 = y^2$  implies x = y."

- (e) Suppose f is a constant function from X to Y. The inverse image of a subset of Y cannot be
  - (i) an empty set
  - (ii) the whole set X
  - (iii) a non-empty proper subset of X (Choose the correct option)
- (f) Let  $X = Y = \mathbb{R}$ . Let  $A \subseteq X, B \subseteq Y$ . Draw the picture for  $A \times B$  where A = [-1,1]and B = [2,3].
- (g) Suppose a system of linear equations in echelon form has a 3 × 5 augmented matrix whose fifth column is a pivot column.

Is the system consistent? Justify.

h) If a set 
$$S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$$
 in  $\mathbb{R}^n$ 

contains the  $\overline{O}$  vector, is the set linearly independent? Justify.

3 (Sem-1/CBCS) MAT HC 2/G 2

(i) If  $A = \begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix}$   $\vec{x} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$ , compute  $(A\vec{x})^T$ .

- (j) What is the determinant of an  $n \times n$ elementary matrix E that has been scaled by 7.
- 2. Answer the following questions : 2×5=10
  - (a) If  $z = -2\sqrt{3} 2i$ , find the polar radius and polar argument of z.
  - (b) Is the function g: R → R given by g(x)=|x-2| one-one and onto?
     Explain.
  - (c) Let universal set be  $\mathbb{R}$  and index set be

N. For a natural number n,  $J_n = \left(0, \frac{1}{n}\right)$ .

Identify with justification  $\bigcap_{n \in N} J_n$ .

3 (Sem-1/CBCS) MAT HC 2/G 3



(d) Show that T is a linear transformation by finding a matrix that implements the mapping

 $T(x_1, x_2, x_3, x_4) = (0, x_1 + x_2, x_2 + x_3, x_3 + x_4)$ 

- (e) A is a 2 × 4 matrix with two pivot positions. Answer the following with justification :
  - (i) Does  $A\vec{x} = \vec{0}$  have a non-trivial solution?
  - (ii) Does  $A\vec{x} = \vec{b}$  have at least one solution for every  $\vec{b}$  ?
- 3. Answer **any four** questions from the following: 5×4=20
  - (a) Find the polar representation of the complex number

 $z = 1 - \cos a + i \sin a \in [0, 2\pi). \qquad 5$ 

(b) Let A and B be subsets of an universal set U. Prove —

(i)  $(A \cap B)^C = A^C \cup B^C$ 

(ii) 
$$(A \cup B)^{C} = A^{C} \cap B^{C}$$

5

3 (Sem-1/CBCS) MAT HC 2/G 4

(c) Define bijection.

Let  $f: \mathbb{N} \to \mathbb{N}$  be f(m) = m - 1, if m is even f(m) = m + 1, if m is odd. Show f is a bijection and  $f^{-1} = f$ . 1+4=5

- (d) For vectors  $\bar{v}_1, \bar{v}_2, ..., \bar{v}_p \in \mathbb{R}^n$  define span  $\{\bar{v}_1, \bar{v}_2, ..., \bar{v}_p\}$  construct a  $3 \times 3$ matrix A with non-zero elements and a vector  $\bar{b}$  on  $\mathbb{R}^3$  such that  $\bar{b}$  is not in the set spanned by the columns of A. 2+3=5
- (e) Alka-Seltzer contains sodium bicarbonate ( $NaHCO_3$ ) and citric acid ( $H_3C_6H_5O_7$ ). When a tablet is dissolved in water the following reaction produces sodium citrate, water and carbon dioxide :
- $NaHCO_3 + H_3C_6H_5O_7 \rightarrow Na_3C_6H_5O_7 + H_2O + CO_2$ Balance the chemical equation using vector equation approach. 5
  - (f) Prove that an  $n \times n$  matrix A is invertible if and only if A is row equivalent to  $I_n$ , and in this case any sequence of elementary row operations that reduces A to  $I_n$  also transforms  $I_n$  into  $A^{-1}$ . 5

3 (Sem-1/CBCS) MAT HC 2/G 5



| 4.   | Answer |            | any four from the following :<br>10×4=40                                                                                                                                                | (0   |
|------|--------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|      | (a)    | <i>(i)</i> | Find the cube roots of the number $z = 1 + i$ and represent them in the complex plane. 5                                                                                                |      |
|      |        | (ii)       | Find the number of ordered pairs<br>(a, b) of real numbers such that                                                                                                                    |      |
|      |        | (iii)      | $(a+ib)^{2002} = a-ib \cdot 2$<br>If x, y, z be real numbers<br>such that $sin x + sin y + sin z = 0$<br>and $cos x + cos y + cos z = 0$ , prove<br>that $sin 2x + sin 2y + sin 2z = 0$ |      |
|      |        |            | and $\cos 2x + \cos 2y + \cos 2z = 0$ .                                                                                                                                                 |      |
|      | (b)    | <i>(i)</i> | Solve the equation<br>$z^7 - 2iz^4 - iz^3 - 2 = 0.$ 5                                                                                                                                   | (    |
|      |        | (ii)       | Find the inverse of the matrix if<br>it exists by performing suitable<br>row operations on the augmented<br>matrix $[A:I]$                                                              |      |
|      |        |            | $A = \begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix} $ 5                                                                                                           |      |
| Sem- | -1/CBC | CS) MAT    | CHC2/G 6 3 (S                                                                                                                                                                           | Sem- |

(i) If  $f: X \to Y$  be a map and  $B \subseteq Y$ , then prove  $f^{-1}(B^C) = (f^{-1}(B))^C$ .

(ii) 
$$A_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$$
, where  $n \in \mathbb{N}$ . Find  
 $\bigcup_{n \in \mathbb{N}} A_n$  and  $\bigcap_{n \in \mathbb{N}} A_n$ .  
(iii) Let  $f : \mathbb{R} \to \mathbb{R}$  be given  
 $f(x) = x^2$ .  
Find  $f^{-1}(1), f^{-1}(-1), f^{-1}([0, 1])$ 

- State the induction principle and (i) (d)use it to show that for any positive integer  $1+2+3+...+n = \frac{n(n+1)}{2}$ .
  - (ii) Write as an implication 'square of an even number is divisible by 4'. Then use direct proof to prove it.

1/CBCS) MAT HC 2/G



- (iii) Give proof using contrapositive 'For an integer x if  $x^2 - 6x + 5$  is even, then x is odd'. 3
- Use the invertible matrix theorem (e) (i) to decide if A is invertible

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 3 & 1 & 2 \\ -5 & -1 & 9 \end{bmatrix}$$
 2

(ii) Compute det A where

|     | 2  | -8 | 6 | 8  |  |   |
|-----|----|----|---|----|--|---|
| 1   | 3  | -9 | 5 | 10 |  |   |
| A = | -3 | 0  | 1 | -2 |  | 4 |
|     | 1  | -4 | 0 | 6  |  |   |

(iii) What do you mean by equivalence class for an equivalence relation? For the relation  $a \equiv b \mod(5)$  on z, find all the distinct equivalence classes of z. 1+3=4

3 (Sem-1/CBCS) MAT HC 2/G

Solve the system of equations (i)  $x_1 - 3x_3 = 8$  $2x_1 + 2x_2 + 9x_3 = 7$  $x_2 + 5x_3 = -2$ 

- Choose h and k such that the *(ii)* system has
  - (a) no solution

(f)

- (b) a unique solution
- (c) many solutions

 $x_1 + hx_2 = 2$  $4x_1 + 8x_2 = k$ 

(iii) Write the general solution of  $10x_1 - 3x_2 - 2x_3 = 7$  in parametric vector form.

Prove that the indexed set (g) (i)  $S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_p\}$  of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent and  $\vec{v}_1 \neq \vec{0}$ , then some  $\vec{v}_i$  (with j > 1) is a linear combination of the preceding vectors  $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_{j-1}$ .

3 (Sem-1/CBCS) MAT HC 2/G 9

4 4

2 5



(iii) Find the area of the parallelogram whose vertices are (0, -2), (6, -1), (-3, 1) and (3, 2).

3 (Sem-1/CBCS) MAT HC 2/G 11

3700

