(Held in 2022)

STATISTICS
(Honours)
Paper : STA-HC- 1026

(Calculus)

Full Marks : 80
Time : Three hours

The figures in the margin indicate

 full marks for the questions.1. Answer the following as directed
(a) Define differential coefficient of $1 \times 10=10$ at the point $x=a$.
(b) The value of $\lim _{x \rightarrow 0} \frac{\tan x}{x}$ is
(ivi (i) 0
(ii) 1
(iii) α
(iv) None of the above
(Choose the correct option)
(c) Evaluate $\Gamma\left(-\frac{3}{2}\right)$.
(d) State Leibnitz's theorem.
(e) Show that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$
(f) Find the differential equation of lines parallel to x-axis
(g) The integral $\beta(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$
converges if (i) $m>0, n>0$ वatwom 1 dut
(ii) $m<0, n>0$ wollol anit zowant
(iii) $m>-1, n>-1$ snit
(Choose the correct option)
(h) If $f(x, y)=2 x^{2}-x y+2 y^{2}$, then find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the point $(1,2)$.

3 (Sem-1/CBCS) STA HC $2 / \mathrm{G} \quad 2$
(i) The differential equation
$\left(\frac{d^{2} y}{d x^{2}}\right)^{2}-2\left(\frac{d y}{d x}\right)^{2}+5 y=0$ is
(i) an ordinary differential equation
(ii) of order two and degree two
(iii) called partial differential equation (Choose the incorrect option)
(j) Find the value of

$$
\operatorname{Lim}_{x \rightarrow \alpha} \frac{x^{4}}{e^{x}}
$$

2. Answer the following questions : $2 \times 5=10$
(a) Examine the differentiability at $x=0$ of the function f defined on the set of real number as follows :

$$
f(x)=x^{2} \sin \frac{1}{x}, \text { if } x \neq 0
$$

$$
=0, \text { if } x=0
$$

(b) Evaluate $\lim _{x \rightarrow 0}(\sin x \log x)$
(c) Show that $f(x)=x^{3}-6 x^{2}+24 x+1$ has neither a maximum nor a minimum.

3 (Sem-1 /CBCS) STA HC 2/G
(d) Obtain a differential equation from the relation

$$
y=A \sin x+B \cos x+x \sin x
$$

(e) Show that for $l>0, m>0$
$\int_{a}^{b}(x-a)^{l-1}(b-x)^{m-1} d x=(b-a)^{l+m-1} \beta(l, m)$
3. Answer any four from the following questions
$5 \times 4=20$
(a) Show that if a function is differentiable at a point, then it is continuous at that point but the converse is not necessarily true.
(b) Show that the necessary and sufficient condition for the differential equation $M d x+N d y=0$ to be be exact is

$$
\begin{equation*}
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \tag{d}
\end{equation*}
$$

(c) Evaluate $\int_{1}^{\log 8} \int_{1}^{\log y} e^{x+y} d y d x$

3 (Sem-1 /CBCS) STA HC $2 / \mathrm{G} 4$
(d) If (a, b) be a point of the domain of definition of a function f such that
(i) f_{x} is continuous at (a, b)
(ii) f_{y} exists at (a, b), then show f is differentiable at (a, b).
rroiseups tivicatsilib arif sulo?
(e) If $u=\sin ^{-1}\left(\frac{x^{3}+y^{3}}{x+y}\right)$, then using Euler's theorem show that
$x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=2 \tan u$
(f) Prove that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$

$$
\frac{1}{x}(x+00) \text { mell sfouleys }
$$

4. (a) (i) If $y=\sin ^{-1} x$, then using Leibnitz's theorem prove that

$$
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0
$$

3 (Sem-1/CBCS) STA HC 2/G 5
Contd.
(ii) Test the continuity and differentiability of the function

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{lll}
1+x & \text { if } & x \leq 2 \\
5-x & \text { if } & x \geq 2
\end{array}\right. \\
& \text { at } x=2
\end{aligned}
$$

(b) Solve the differential equation

$$
\begin{equation*}
\frac{d y}{d x}=\frac{x+2 y-3}{2 x+y-3} \tag{10}
\end{equation*}
$$

5. (a) (i) For a positive number P, show that

$$
\Gamma(P) \Gamma\left(P+\frac{1}{2}\right) 2^{2 P-1}=\sqrt{\pi} \Gamma(2 P)
$$

(ii) Evaluate $\lim _{x \rightarrow 0}(\cos x)^{\frac{-1}{x^{2}}}$
tents pxory atero Or
(b) (i) Evaluate $\int_{0}^{\pi / 2} \log \sin x d x$
(ii) If $u=2(a x+b y)^{2}-\left(x^{2}+y^{2}\right)$ and $a^{2}+b^{2}=1$, find the value of $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}$
6. (a) (i) Show that the function $u=x^{3}+y^{3}-3 a y$ has a maximum or minimum at the point (a, a) according as a is negative or positive.
(ii) If $f(x, y)=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}$; $(x, y) \neq(0,0), \quad f(0,0)=0$, then show that at the origin $f_{x y} \neq f_{y x}$

$$
\text { bis gi glymavegt sitt do } 5
$$

Or

(b) (i) Solve the differential equation :
$\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+5 y=\sin x$
(ii) Define Clairaut's
equation. Explain the general solution of Clairaut's equation.

3 (Sem-1 /CBCS) STA HC 2/G
Contd.
lo sulsy $u^{2}+v^{2}=x^{3}+y^{3}$, prove that

$$
\frac{\partial(u, v)}{\partial(x, y)}=\frac{y^{2}-x^{2}}{2 u v(u-v)}
$$

(ii) Solve the partial differential equation : equation :
$\left(\frac{y^{2} z}{x}\right) P+x z q=y^{2}$
Or
(b) If f is defined and continuous on the rectangle $R=[a, b ; c, d]$, and if
(i) $f_{x}(x, y)$ exists and is continuous on the rectangle R, and
(ii) $g(x)=\int_{c}^{d} f(x, y) d y$ for $x \in[a, b]$ then show that g is differentiable on $[a, b]$ and $g^{\prime}(x)=\int_{c}^{d} f_{x}(x, y) d y$ 10 eifuszialo 9Miloc snog stis nisicxas

