PHYSICS

(Honours)
Paper : PHY-HC-3016

(Mathematical Physics-II)

Full Marks : 60
Time: Three hours
The figures in the margin indicate full marks for the questions.

1. Answer any seven of the following questions: $1 \times 7=7$
(a) Define the singular point of a second order linear differential equation.
(b) If $P_{n}(x)$ and $Q_{n}(x)$ are two independent solutions of Legendre equation, then write the general solution of the Legendre equation.
(c) Give one example where Hermite polynomial is used in physics.
(d) The function $P_{n}(1)$ is given as
(i) zero
(ii) -1
(iii) $P_{n}(-1)$ scos
(iv) 1

(Choose the correct option)

(e) Define trace of a matrix.
(f) What is the rank of a zero matrix ?
(g) Define self-adjoint matrix.
(h) What do you mean by eigenvector ?
(i) Which one of the following represents an equation of a vibrating string ?
(i) $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$
$\Gamma=\Gamma \times 1$
(ii) $\frac{\partial y}{\partial t}=c \frac{\partial y}{\partial x}$
(iii) None of the above
(Choose the correct option) (j) Write the Laplace equation spherical ent 10 polar co-ordinate system.
(k) Define gamma function.
(l) State the Dirichlet condition for Fourier series.
3 (Sem-3/CBCS) PHY HC 1/G 2
2. Answer any four of the following questions : $2 \times 4=8$
(a) Check whether Frobenius method can be applied or not to the following equation :

$$
2 x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+(x-5) y=0
$$

(b) If $\int_{-1}^{+1} P_{n}(x) d x=2$, find the value of n.
(c) If A and B are Hermitian matrices, show that $A B+B A$ is Hermitian whereas $A B-B A$ is skew-Hermitian.
(d) Verify that $(A B)^{T}=B^{T} A^{T}$, where $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ 3 & -2 & 1\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & 2 \\ 2 & 0 \\ -1 & 1\end{array}\right]$
(e) Given matrices
$\sigma_{1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \sigma_{2}=\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right], \quad \sigma_{3}=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$, show that $\sigma_{1} \sigma_{2}-\sigma_{2} \sigma_{1}=2 i \sigma_{3}$.
(f) Using the property of gamma function evaluate the integral

$$
\int_{0}^{\infty} x^{4} e^{-x} d x
$$

3 (Sem-3/CBCS) PHY HC 1/G 3
(g) Write the degree and order of the following partial differential equations :
(i) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0$
(ii) $\left(\frac{\partial u}{\partial x}\right)^{3}+\frac{\partial u}{\partial t}=0$
(h) Find the value of a_{0} of the Fourier series for the function $f(x)=x \cos x$ in the interval $-\pi<x<\pi$.
3. Answer any three of the following questions:
$5 \times 3=15$
(a) (i) Why is the function
$\left(1-2 x h+h^{2}\right)^{-1 / 2}$ known as a generating function of Legendre polynomial ?
(ii) Show that
$\left(1-2 x h+h^{2}\right)^{-1 / 2}=\sum_{n=0}^{\infty} P_{n}(x) h^{n}$
where $P_{n}(x)$ is the Legendre polynomial.
(b) Evaluate explicitly the Legendre's polynomials $P_{2}(x)$ and $P_{3}(x)$.
(c) Write the recursion formula for gamma function. Prove that

$$
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}=1.772
$$

(d) What is diagonalize matrix ? Diagonalize the following matrix :

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

(e) Express the matrix :
$A=\left[\begin{array}{rrr}2 & 1 & 0 \\ 1 & -1 & -2 \\ 4 & 2 & 0\end{array}\right]$ as a sum of symmetric and skew-symmetric matrix.
(f) What is adjoint of a matrix ? For the matrix $A=\left[\begin{array}{rr}1 & 2 \\ 3 & -5\end{array}\right]$ verify the theorem $A \cdot(\operatorname{Adj} A)=(\operatorname{Adj} A) \cdot A=|A| \cdot I$ where I is unit matrix.
(g) If the solution $y(x)$ of Hermite's differential equation is written as $y(x)=\sum_{r=0}^{\infty} a_{r} x^{k+r}$, show that the allowed values of k are zero and one only.
(h) Find the Fourier series representing

$$
f(x)=x, 0<x<2 \pi
$$

4. Answer any three of the following questions : $10 \times 3=30$
(a) (i) Verify that the matrix

$$
A=\frac{1}{3}\left[\begin{array}{rrr}
1 & 2 & 2 \\
2 & 1 & -2 \\
-2 & 2 & -1
\end{array}\right] \text { is orthogonal. }
$$

(ii) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$ and also find A^{-1}
(b) Obtain the power series solution of the Legendre equation

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0
$$

(c) (i) Obtain the following orthogonality property of Legendre polynomial :
$\int_{-1}^{+1} P_{n}(x) P_{m}(x) d x=0$ for $m \neq n$ 6
(ii) Show that

$$
H_{0}(x)=1 \text { and } H_{1}(x)=2 x \quad 2+2=4
$$

(d) Prove the following recurrence relations:
(i) $n P_{n}=(2 n-1) x P_{n-1}-(n-1) P_{n-2}$
(ii) $\quad x P_{n}^{\prime}-P_{n-1}^{\prime}=n P_{n}$
(iii) $2 x H_{n}(x)=2 n H_{n-1}(x)+H_{n+1}(x)$
(e) What is periodic function ? Express the periodic functions in a series of sine and cosine functions. What are Fourier coefficients ? Determine the Fourier coefficients.
(f) (i) Using the method of separation of variables, solve : 6 $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$, where $u(x, 0)=6 e^{-3 x}$
(ii) Find the eigenvalues of the matrix

$$
A=\left[\begin{array}{rrr}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]
$$

(g) (i) If $H_{n}(x)$ be the polynomial of Hermite differential equation, prove that

$$
\int_{-\infty}^{+\infty} e^{-x^{2}} H_{n}^{2}(x) d x=2^{n} \sqrt{\pi} \cdot n!
$$

(ii) Prove that the following matrix is unitary :

$$
\left[\begin{array}{ll}
\frac{1}{2}(1+i) & \frac{1}{2}(-1+i) \\
\frac{1}{2}(1+i) & \frac{1}{2}(1-i)
\end{array}\right]
$$

(h) Deduce the one dimensional wave equation of transversely vibrating string under tension T. Solve the equation by the method of separation of variables $7+3=10$

