PHYSICS

(Honours)
Paper: PHY-HC-3026
(Thermal Physics-II)
Full Marks : 60
Time : Three hours
The figures in the margin indicate full marks for the questions.

1. Answer any seven of the following questions $1 \times 7=7$
(a) What is a cyclic process ?
(b) Which state of matter has the highest entropy ?
(c) How does root mean square velocity change with temperature ?
(d) What is velocity space?
(e) Name the transport phenomenon present in a gas that involves transfer of energy.
(f) Write the S.I. unit of Van der Waals constant ' b '.
(g) Why does the pressure of a gas in a container wall increase when it is heated?
(h) Is a 'closed system' an 'isolated system'?
(i) How does the viscosity of a gas vary with pressure ?
(j) Can Gibbs' free energy be negative ?
(k) What is the origin of Doppler broadening in spectral lines ?
(l) In Brownian motion, how does size of the particle affect the speed of the particle ?
2. Answer any four of the following questions: $2 \times 4=8$
(a) At what temperature will root mean square velocity of a gas be half its value at $0^{\circ} \mathrm{C}$.
(b) Represent isobaric process in a $\mathrm{P}-\mathrm{V}$ diagram.
(c) Evaluate Boyle temperature of a gas if its critical temperature is 5.5 K .
(d) Consider a system at room temperature. Explain about the value of entropy for the following situations :
(i) temperature of the system is increased and reached equilibrium state
(ii) temperature is decreased to $0 K$.
(e) Explain physical significance of zeroth law of thermodynamics.
(f) How mean free path of a molecule is affected by temperature ?
(g) Why does the area of the MaxwellBoltzmann velocity distribution curve always remain equal to unity ? Explain.
(h) Why specific heat of a gas at constant pressure is always greater than the specific heat of a gas at constant volume ?
3. Answer any three of the following questions:
$5 \times 3=15$
(a) Find the change in entropy of the universe as a result of the following processes :
$21 / 2+21 / 2=5$
(i) A copper block of 400 gm mass and with thermal capacity (at constant pressure) of $150 \mathrm{~J} / \mathrm{deg}$ at $100^{\circ} \mathrm{C}$ is placed in a lake at $10^{\circ} \mathrm{C}$.
(ii) The same block at $10^{\circ} \mathrm{C}$ is dropped from a height of 100 m into the lake.
(b) What are the four thermodynamic potentials ? How specific heat at constant pressure can be expressed in terms of enthalpy ?
(c) Find an expression for coefficient of performance of a refrigerator.
(d) Derive $C_{P}-C_{V}=R$ for perfect gas from Maxwell's thermodynamic relations.
(e) Calculate the average speed and most probable speed of 1 mole of hydrogen molecule at 300 K . Neglect the mass of electron.
$21 / 2+21 / 2=5$
(f) Derive an expression for work done during an isothermal process.
(g) A Carnot engine absorbs 100 J of heat from a reservoir at a temperature of the normal boiling point of water and rejects heat to a reservoir at the temperature of triple point of water. Find the heat rejected by the engine and its thermal efficiency. $\quad 21 / 2+21 / 2=5$
(h) Show that at the critical temperature, the departure of Van der Waals' gas law from perfect gas law measures 62.5\%.
4. Answer any three of the following questions:
$10 \times 3=30$
(a) State Carnot's theorem. Briefly state the operations of a Carnot cycle by plotting them in (i) $\mathrm{P}-\mathrm{V}$ diagram and (ii) $\mathrm{T}-\mathrm{S}$ diagram. Show from T-S diagram that the efficiency of the cycle is $1-\frac{T_{2}}{T_{1}}$, being independent of the nature of the working substance, where T_{1} and T_{2} are the source and sink temperature respectively.
$2+3+3+2=10$
(b) Derive all three TdS equations. Write physical significance of TdS equations.

$$
3+3+3+1=10
$$

(c) What is Joule-Thomson effect ? Derive an expression for Joule-Thomson coefficient. Find the values of JouleThomson coefficient for a perfect gas and a real gas. $\quad 2+3+2+3=10$
(d) Derive Maxwell-Boltzmann's velocity distribution law.
(e) What are critical constants of a gas ? Obtain their values in terms of the constants of Van der Waals' equation. Hence deduce the law of corresponding states.
$3+3+4=10$
(f) Define coefficient of thermal conductivity. Show that coefficient of thermal conductivity $K=\eta C_{V}$ for an ideal gas, where η is coefficient of viscosity and C_{V} is specific heat at constant volume.
(g) Define free path and mean free path. What do you mean by 'collision probability'? Show that the probability of a gas molecule traversing a distance x without collision is $e^{-x / \lambda}$ where λ is the mean free path of the gas molecules. $1+1+2+6=10$
(h) Write short notes on the following : (any two) $5 \times 2=10$
(i) Unattainability of absolute zero
(ii) Adiabatic demagnetization
(iii) Andrew's experiment of CO_{2} gas
(iv) Brownian Motion

