B.Sc_65em_HC_2022 (Math Phy, Bot, Che, Com. sc, Statis)

Total number of printed pages-8

3 (Sem-6/CBCS) MAT HC 1

(iv) None

2022

MATHEMATICS =

(Honours)

Paper : MAT-HC-6016

notional e (Complex Analysis)

Full Marks : 60

Time : Three hours

The figures in the margin indicate full marks for the questions.

1. Answer **any seven** questions from the following: 1×7=7

(a) If c is any nth root of unity other than unity itself, then value of $1+c+c^2+\cdots+c^{n-1}$ is

(i) $2n\pi$

(ii) 0

(iii) -1

(iv) None of the above (Choose the correct answer)

D (Sem-6/CBCS) MAT HOL / O Contd. 2 Contd. 2

• (iii) 1-

3 (Sem-6/CBCS) MAT HC 1/G 2

3 (Sem-6/CBCS) MAT HC 1/G 3 OLOH TAM ROBO Contd.

- (h) What is Laplace's equation?
- What is extended complex plane? (i)
- What is Jordan arc? (i)
- 2. Answer any four questions from the following: 2×4=8

(a) Write principal value of $arg\left(\frac{i}{-1-i}\right)$

- (b) If $f(z) = x^2 + y^2 2y + i(2x 2xy)$, where z = x + iy, then write f(z) in terms of z.
 - (c) Use definition to show that $\lim_{z \to z_0} \overline{z} = \overline{z}_0$ is other of the set of (a)
 - (d) Find the singular point of

$$f(z) = \frac{z^2 + 3}{(z+1)(z^2+5)}.$$

(e) If f'(z) = 0 everywhere in a domain D, then prove that f(z) must be constant throughout D.

3 (Sem-6/CBCS) MAT HC 1/G 40 OVI OH TAM (2000) 8-11-21 8

of the circle $|z| = \frac{1}{z} \cdot |z| = |z|$ (g) If $f(z) = \frac{z}{\overline{z}}$, find $\lim_{z \to 0} f(z)$, if it exists. (h) Write the function $f(z) = z + \frac{1}{z} (z \neq 0)$ in the form $f(z) = u(r, \theta) + iv(r, \theta)$. 3. Answer any three questions from the following : (a) If z_1 and z_2 are complex numbers, then show that $\sin(z_1+z_2)=\sin z_1\cos z_2+\cos z_1\sin z_2.$ (b) Show that exp. $(2\pm 3\pi i) = -e^2$. (c)Sketch the set $|z-2+i| \le 1$ and determine its domain. (d) Let C be the arc of the circle |z| = 2from z=2 to z=2i, that lies in the 1st quadrant, then show that $\left|\int_C \frac{z-2}{z^2+1} \, dz\right| \leq \frac{4\pi}{15}$

3 (Sem-6/CBCS) MAT HC 1/G 5 Contd.

(f) Evaluate f'(z) from definition, where 5×3=15

- (e) Evaluate $\int_C \frac{dz}{z}$, where C is the top half of the circle |z|=1 from z=1 to z = -1.
- (f) If $f(z) = e^z$, then show that it is an analytic function.
- (g) If $f(z) = \frac{z+2}{z}$ and C is the semi circle $z = 2e^{i\theta}$, $(0 \le \theta \le \pi)$, then evaluate $\int_C f(z) dz$. 3. Answer any three questions from the
- (h) Find all values of z such that $e^z = -2$.
- 4. Answer any three questions from the following : 10×3=30 $= \sin z, \cos z_0 \pm \cos z, \sin z_2$
 - (a) State and prove Cauchy-Riemann equations of an analytic function in polar form.
- (b) Suppose that f(z) = u(x, y) + iv(x, y), (z = x + iy)and $z_0 = x_0 + iy_0$, $w_0 = u_0 + iv_0$, then prove that if $\lim_{(x, y) \to (x_0, y_0)} u(x, y) = u_0$ and $\lim_{(x, y) \to (x_0, y_0)} v(x, y) = v_0$ then

 $\lim_{z \to z_0} f(z) = w_0$ and conversely.

3 (Sem-6/CBCS) MAT HC 1/G 6

(c) If the function f(z) = u(x, y) + iv(x, y)is defined by means of the equation

 $f(z) = \begin{cases} f(z) \\ f(z)$ $\left\{\frac{\overline{z}^e}{z}, \text{ when } z \neq 0\right\}$ 0, when z=0,

> then prove that its real and imaginary parts satisfies Cauchy-Riemann equations at z=0. Also show that f'(0) fails to exist.

- (d) If the function
 - f(z) = u(x, y) + iv(x, y) and its conjugate $\bar{f}(z) = u(x, y) - iv(x, y)$ are both analytic in a domain D, then show that f(z) must be constant throughout D.
- If f be analytic everywhere inside and (e) on a simply closed contour C, taken in the positive sense and z_0 is any point interior to C, then prove that

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz \,.$$

State and prove Liouville's theorem. (f)

3 (Sem-6/CBCS) MAT HC 1/G 7 Contd.

(g) Suppose that a function f is analytic throughout a disc $|z - z_0| < R_0$ centred at z_0 and with radius R_0 . Then prove that f(z) has the power series representation

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad (|z - z_0| < R_0)$$

where $a_n = \frac{f^n(z_0)}{|\underline{n}|}$, (n = 0, 1, 2,)

(h) State and prove Laurent's theorem.

1 m daoth analytic, in a domain D_{0} then, = $E \cdot 0$ show that f(z) must be constant? (a) throughout $D_{correction}$ is stars $\langle b \rangle$ (b) if f be analytic everywhere inside and (c) if f be analytic everywhere inside and on a simply closed contour C, taken in the positive sense and z_{0}^{0} is any point (ψ_{i} + interior to C, then prove that reals $_{0}w_{i} + _{0}x = _{0}w_{1} + _{0}\psi_{i} + \frac{f(z)}{g_{z}} \frac{dz}{dz}$. $u = (\psi_{i} x_{i})_{u} \frac{f(z_{0})}{(w_{0}, w_{0}) + (w_{1})}$

) State and prove Lightynes meorem.

8

3 (Sem-6/CBCS) MAT HC 1/G

3 (Se00088CS) MAT HC 1/G

