lsịnq
3 (Sem-6/CBCS) MAT HC2
9nt 10 19bio b 2022

MATHEMATICS

(Honours)
gnibnil Paper : MAT-HC-6026
(Partial Differential Equations)
Full Marks : 60
Time : Three hours
The figures in the margin indicate full marks for the questions.

1. Answer any seven
(i) The equation of the form $P_{p}+Q_{q}=\mathbb{R}$ is known as
(a) Charpit's equation
(b) Lagrange's equation
(c) Bernoulli's equation
(d) Clairaut's equation
(Choose the correct answer)
lsijusq 75Din moitsies lianforsnis
(ii) How many minimum no. of independent variables does a partial
SOH differential equation require?
(iii) Find the degree and order of the equation $\frac{\partial^{3} z}{\partial x^{3}}+\left(\frac{\partial^{3} z}{\partial x \partial y^{2}}\right)^{2}+\frac{\partial z}{\partial y}=\sin (x+2 y)$
(iv) Which method can be used for finding the complete solution of a non-linear partial differential equation of first order
(a) Jacobi method ${ }^{\text {a }}$
(b) Charpit's method smiT
(c) Both (a) and (b) sif escmpl ssit

(Choose the correct answer)
(v) State True Or False : itsups orlT

$u_{x x}+u_{y y}+u_{z z}=0$
is an Hyperbolic equation.
(vi) Fill in the blanks
(vi) Fill in the blanks ; illwonted (o)
$\left(\frac{\partial z}{\partial x}\right)^{2}+2 \frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y^{2}}+z=0$
is a \quad (b)
differential equation.
$8=$ (vii) The characteristic equation of S $y u_{x}+x u_{y}=u$ is

$$
\begin{equation*}
\text { (a) } \frac{d x}{x}=\frac{d y}{y}=\frac{d u}{u} \tag{is}
\end{equation*}
$$

(b) $\frac{d x}{y}=\frac{d y}{x}=\frac{d u}{u}$
(c) $\frac{d x}{u}=\frac{d y}{x}=\frac{d u}{y}$
(d) None of the above
motle bus 5
(viii) State True Or False
noitsups $x u_{x}+y u_{y}=u^{2}+x^{2}$ is a semi-linear
pitqualial differential equation.
(ix) Fill in the blanks:

A solution $z=z(x, y)$ when interpreted as a surface in 3-dimensional space is vits 10 called \qquad 29 :lqu
(x) The partial differential equation is
ai borlo elliptical if nos noifnsM (ivu)
ètiquan (a) $B^{2}-4 A C>0$ mi boen
(b) $B^{2}-4 A C \geq 0$ bonterm

9nj 20 (c) $B^{2}-4 A C \leq 0$ neiudgalW (riviv)
(d) $B^{2}-4 A C<0$ noitsups
(Choose the correct answer)
2. Answer any four : $2 \times 4=8$
(i) Define quasi-linear partial differential equation and give one example.
(ii) Show that a family of spheres $(x-a)^{2}+(y-b)^{2}=r^{2}$ satisfies the partial differential equation
$z^{2}\left(p^{2}+q^{2}+1\right)=r^{2}$
(iii) Eliminate the constants a and b from $z=(x+a)(y+b)$.
(iv) Determine whether the given equation is hyperbolic, parabolic or elliptic

$$
u_{x x}-2 u_{y y}=0
$$

(v) Solve the differential equation $p+q=1$.
(vi) Explain the essential features of the "Method of separation of variables".
(vii) Mention when Charpit's method is used. Name a disadvantage of Charpit's method.
(viii) What is the classification of the equation
(79uraлт $u_{x x}-4 u_{x y}+4 u_{y y}=e^{y}$

3 (Sem - $6 /$ CBCS) MAT HC $2 / \mathrm{G}$
4
3. Solve any three : $5 \times 3=15$
(i) Form a partial differential equation by eliminating arbitrary functions f and F from $y=f(x-a t)+F(x+a t)$
(ii) Solve latenge ont onimmotad (iviv)

$$
y^{2} p-x y q=x(z-2 y)
$$

(iii) Find the integral surface of the linear partial differential equation
$x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=\left(x^{2}-y^{2}\right) z$ which contains the straight line
borltorn $x+y=0, z=1$.pq $=s_{s}$ svioz (is)
(iv) Find the solution of the equation $z=p q$ which passes through the parabola $x=0, y^{2}=z \cdot{ }_{z} \cdot \frac{s 6}{x 6} x$
(v) Find a complete integral of the equation $x^{2} p^{2}+y^{2} q^{2}=1 . \quad$ एू - sm $)$
svlo(vi) Reduce the equation $y u_{x}+u_{y}=x$ to canonical form and obtain the general solution.

3 (Sem-6/CBCS) MAT HC $2 / \mathrm{G}$
$\bar{c}=$ (vii) Apply the method of separation of variables $u(x, y)=f(x) g(y)$ to solve the equation $u_{x}+u=u_{y}$,
$u(x, 0)=4 e^{-3 x}$.
(viii) Determine the general solution of $4 u_{x x}+5 u_{x y}+u_{y y}+u_{x}+u_{y}=2$.
4. Answer any three : $10 \times 3=30$
(i) Solve $\left(p^{2}+q^{2}\right) y-q z=0$ by Jacobi method.
(ii) Solve $z^{2}=p q x y$ by Charpit's method.
(iii) Find the general solution of the
slodsisq differential equation

$$
x^{2} \frac{\partial z}{\partial x}+y^{2} \frac{\partial z}{\partial y}=(x+y) z
$$

moitsupe palt
$(m z-n y) p+(n x-l z) q=l y-m x$
(v) Use $v=\ln u$ and $v=f(x)+g(y)$ to solve the equation miol Lsoinontso

$$
x^{2} u_{x}^{2}+y^{2} u_{y}^{2}=u^{2}
$$

(vi) Find the solution of the equation $z=\frac{1}{2}\left(p^{2}+q^{2}\right)+(p-x)(q-y)$ which passes through the x axis.
(vii) Find the canonical form of the equation $y^{2} u_{x x}-x^{2} u_{y y}=0$
(viii) Classify the second order linear partial differential equation with example.

