The figures in the margin indicate full marks for the questions.

1. Answer any seven questions : $1 \times 7=7$
(a) What is a plane wave ?
(b) Why cannot a plane wave propagate in a conducting medium without bsbsty attenuation ? तtsq snti whid (0)
(c) What do you mean by scaler potential ?
(d) In propagation of EM wave the relation $10 H$ between wave vector and electric field intensity is given as $\vec{k} \cdot \vec{E}=0$. What does this equation signify ?
(e) How are refractive index, magnetic permeability and electric permittivity (Uvostt słjosprosmotjoslat)
related?
(f) What is polarizing angle ?
gibofboth sibumon onls sit astupl ont
(g) Define reflection co-efficient. Isi?
(h) What do you mean by anisotropic medium ? sw gnsld is ei forlV (o)
(i) What is a wave guide ?
(j) Draw the path of light through graded
zolsoz index fibre. wov ob jedW (o)
¢ Isitngtoq

3 (Sem-6/CBCS) PHY HC 1/G
2. Answer any four of the following questions: croijomun odt ai farlW
(a) We know that intensity of a light source is given by $1.33 \times 10^{-3} E_{0}^{2}$ where E_{0} is electric field intensity. Also intensity of the source is power per unit area. What is the electric field intensity of a laser beam of 10^{5} watt with beam crosssectional area 10^{-6} square cm ?
(b) What is the physical significance of displacement current ? anoitasup
(c) When a plane polarised EM wave is incident on the interface of two dielectrics, which components of \vec{E} and \vec{D} and also \vec{B} and \vec{H} are continuous ?

3 (Sem-6/CBCS) PHY HC 1/G 3 Contd.
(d) What is evanescent wave ?
(e) What is the function of a half-wave plate ?
Sownoe Jrigil staxtiamstrisisdtivoril oW in
(f) Give one example each of uniaxial and biaxial crystals.
(g) What do you mean by specific rotation of a liquid ?
19281
of Viansjai blsil simjoglo odt. ai
(h) Give the differences between single mode and multiple mode fibres.
3. Answer any three of the following questions: $5 \times 3=15$
a) State the four Maxwell's equations and write their physical significances.(b) Construct the electromagnetic wave - equation in free space. What is its velocity ?

```
& enowmisnoo
```

3 (Sem-6/CBCS) PHY HC 1/G 4 DII OH YHY ((20801д-moz)
bri (c) Show that for a plane wave in bus conducting medium propagation vector O $=$ is complex.
(d) How will you use Babinet compensator Svsw M to analyse polarization of light ?
(e) What are transverse electric and transverse magnetic modes of EM wave in a waveguide?
(f) Derive an expression of numerical \& norlw aperture for an optical fibre.
(g) Define optic axis in terms of wave sum 8 ezsurface. 10 dsle is ofno Jnobioni
(h) Derive an expression for plasma frequency.
ontt aznorib noitslst z'lonest gniaU (9)
4. Answer any three of the following questions :
$10 \times 3=30$ Rivslog :ojogv jifjoglo ro?
(a) Defining Poynting vector. Establish the fact that the rate of decrease of total energy is equal to joule loss plus the muib net flow out of the surface enclosing $0 I=8+1$ the volume.

3 (Sem-6/CBCS) PHY HC 1/G 5) гн уня роя Contd.
(b) What are gauge transformations ? Find the conditions of Lorentz gauge and Coulomb gauge. $2+(6+2)=10$ Totsanseqmon fonids\& sau wov Iliw woH (b)
(c) Derive Fresnel's relation for EM wave wess with \vec{E} perpendicular to the plane of svew Mincidence with proper diagram.

Is (d) Estimate the proportion of incident power which is transmitted when a sv.sw plane wave with frequency 10 GHz is incident onto a slab of thickness 8 mm $3 . \operatorname{smaslq}$ and dielectric constant $2 \cdot 5$.
(e) Using Fresnel's relation, discuss the phenomenon of total internal reflection for electric vector polarised onlt deild perpendicular to plane of incidence.
 orlt awle What is skin depth ? Derive its grizolorexpression for a conducting medium.

$$
6+1+3=10
$$

3 (Sem-6/CBCS) PHY HC $1 / \mathrm{G}$ 6

(f) How can you produce and analyse circularly and elliptically polarized lights ? Explain with relevant ray diagram.
$(2+2+2+2)+2=10$
(g) Explain how you will measure specific rotation of a liquid by half shade polarimeter.
(h) How will you determine the angle at which energy must be coupled into a dielectric waveguide ?

