Total number of printed pages-8

3 (Sem-6/CBCS) STA HC 2

2022

STATISTICS

(Honours)

Paper : STA-HC-6026

(Multivariate Analysis and Nonparametric Analysis)

Full Marks : 60

Time : Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer **any seven** of the following questions as directed : 1×7=7
- (a) The moment generating function of bivariate normal distribution with parameters $(0, 0, \sigma_1^2, \sigma_2^2, \rho)$ is _____.

(Fill in the blank)

Contd.

(b) Let $X \sim N_P(\mu, \Sigma)$. Then the

characteristic of X is given by

(i)
$$e^{i\underline{t},\underline{\mu}+\frac{1}{2}\underline{t}'\Sigma\underline{t}}$$

(ii) $e^{i\underline{t}',\underline{\mu}-\frac{1}{2}\underline{t}'\Sigma\underline{t}}$
(iii) $e^{i\underline{t}',\underline{\mu}+\frac{1}{2}\underline{t}'\Sigma\underline{t}}$

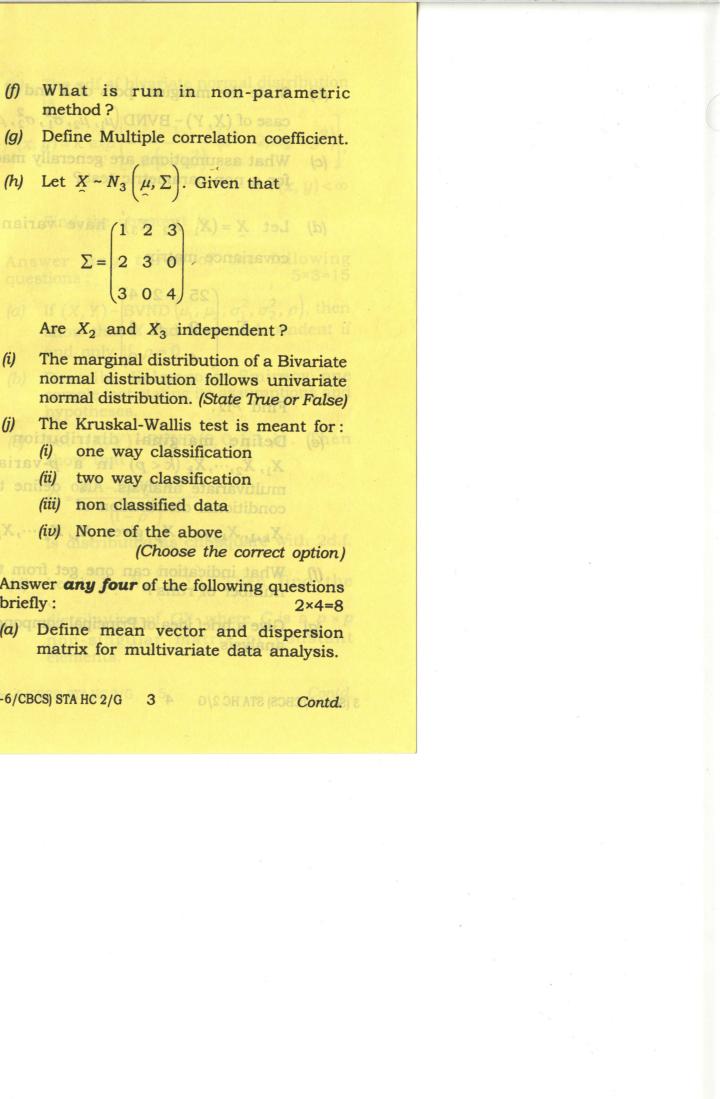
(iv) None of the above

(Choose the correct option)

- Ordinary sign test considers the (c) difference of observed values from the hypothetical median value in terms of:
 - (i) signs only a short that
 - (ii) magnitudes only
 - (iii) sign and magnitude both
 - (iv) None of the above betoenib as (Choose the correct option)
- (d) What is dispersion matrix in Multivariate data analysis?
- (e) Let $(X, Y) \sim \text{BVND}(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$. Then state the conditional pdf of Y given X = x.

3 (Sem-6/CBCS) STA HC 2/G 2

method? (g) Define Multiple correlation coefficient. (h) Let $X \sim N_3(\mu, \Sigma)$. Given that sonsineverse (1 2 3) $\Sigma = 2 3 0$ 3 0 4 Are X_2 and X_3 independent? The marginal distribution of a Bivariate (i) normal distribution follows univariate normal distribution. (State True or False)


- The Kruskal-Wallis test is meant for: (i)
 - (i) one way classification
 - (ii) two way classification
 - (iii) non classified data

 - (iv) None of the above

(Choose the correct option)

- 2. Answer any four of the following questions briefly : 2×4=8
 - (a) Define mean vector and dispersion matrix for multivariate data analysis.

3 (Sem-6/CBCS) STA HC 2/G 3 A OLS OH ATE (200 Contd.

- (b) State the marginal pdfs of X and Y in case of $(X, Y) \sim \text{BVND}(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$.
- What assumptions are generally made (c) for a non-parametric test?
- (d) Let $X = (X_1 \ X_2 \ X_3)'$ have variance

covariance matrix

(25 -2 4) $\sum = |-2| 4 1$ 1 9 Aut on of a Bivariate

Find P_{12} .

(e) Define marginal distribution of $X_1, X_2, \dots, X_k \ (k < p)$ in a p-variate multivariate analysis. Also define the conditional distribution of

 $X_{k+1}, X_{k+2}, \dots, X_p$ given X_1, X_2, \dots, X_k .

- What indication can one get from the *(f)* number of runs?
- (g) Give a brief idea of Principal component analysis. terrevitium tot xintem

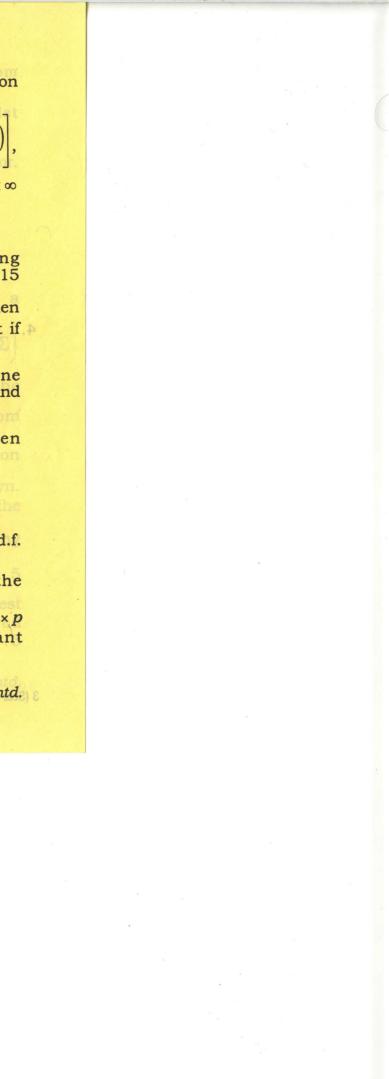
3 (Sem-6/CBCS) STA HC 2/G 4 8 D\S OH AT2 (2020) 0-m32 8

(h) The pdf of bivariate normal distribution is

$$f(x, y) = k \exp \left[-\frac{1}{2(1-\rho^2)} \left(x^2 - 2\rho xy + y^2 \right) -\infty < (x, y) < -\infty < (x, y) <$$

Find the constant k.

- 3. Answer any three of the following 5×3=15 questions :
 - (a) If $(X, Y) \sim \text{BVND}(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$, then show that X and Y are independent if and only if $\rho = 0$.
 - (b) Describe Kolmogorov-Smirnov one sample test stating its assumptions and
 - (c) Let $(X, Y) \sim \text{BVND}(0, 0, 1, 1, \rho)$. Then show that


 $Q = \frac{X^2 - 2\rho XY + Y^2}{(1 + 1)^2}$

is distributed as chi-square with 2d.f.

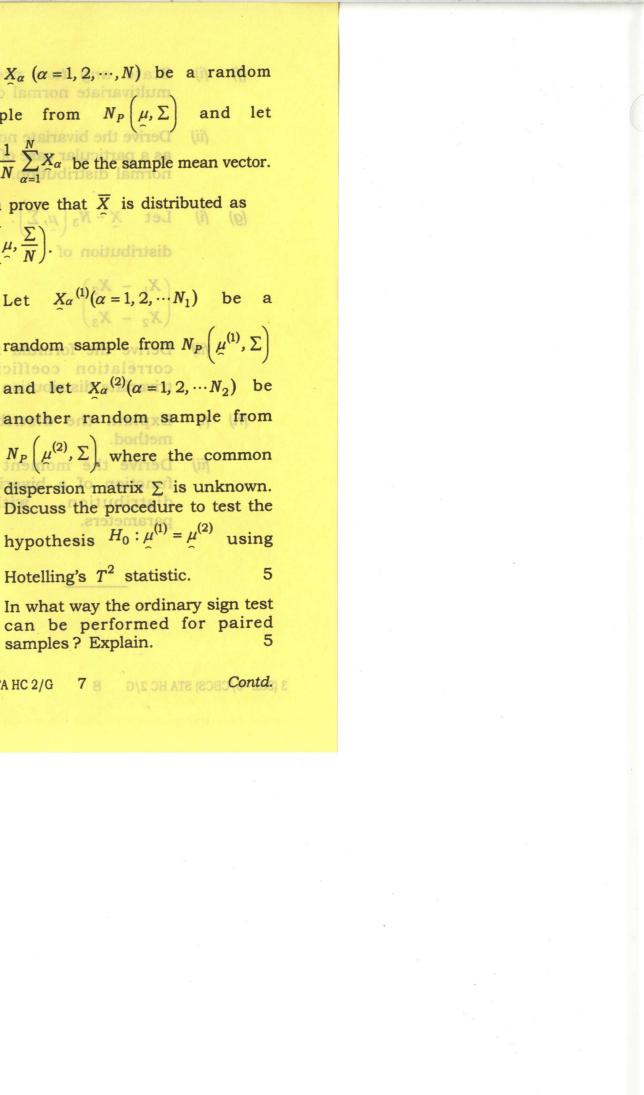
(d) Let $X \sim N_P(\mu, \Sigma)$. Then find the distribution of CX where C is a $p \times p$

non-singular matrix of constant elements.

3 (Sem-6/CBCS) STA HC 2/G 5 Contd.

- Write an explanatory note on test of (e) randomness.
- With usual notations, prove that *(f)*

$$r_{12\cdot3} = \frac{r_{12} - r_{13}r_{23}}{\sqrt{\left(1 - r_{13}^2\right)\left(1 - r_{23}^2\right)}}$$


- Examine if Hotelling's T^2 is invariant (g)under changes in the units of measurement.
- (h) Describe one sample sign test for testing the null hypothesis that the population median is a given value.
- 4. Answer any three questions from the 0 = 0 11 vino bo10×3=30 following :
- (a) (i) State any two applications of bas another multivariate analysis. 2
 - (*ii*) Let $(X, Y) \sim \text{BVND}(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$. Find the conditional distributions of X/Y=y and Y/X=x.
 - (b) Derive the probability density function of *p*-variate normal distribution.
- (c) (i) Describe the Wilcoxon Mann-Mhitney U test. dintalb al 5
- (ii) Let $(X, Y) \sim BVND$ with parameters $\mu_x = 60$, $\mu_y = 75$, $\sigma_x = 5$, $\sigma_y = 12$ and $\rho = 0.55$. constant. Then find $P\{65 \le X \le 75\}$ 5

3 (Sem-6/CBCS) STA HC 2/G 6 0 0 0 0 ATE (2010) a more to

(d) Let X_{α} ($\alpha = 1, 2, \dots, N$) be a random and let sample from $N_P \mid \mu, \Sigma \mid$ ormal density $\overline{X} = \frac{1}{N} \sum_{\alpha=1}^{N} X_{\alpha}$ be the sample mean vector. Then prove that \overline{X} is distributed as $N_P\left(\mu, \frac{\Sigma}{N}\right)$. To noisedisteib (i) Let $X_{\alpha}^{(1)}(\alpha = 1, 2, \dots N_1)$ be a (e) signification random sample from $N_P\left(\mu^{(1)}, \Sigma\right)$ and let $X_{\alpha}^{(2)}(\alpha = 1, 2, \dots N_2)$ be another random sample from $N_P\left(\mu^{(2)}, \Sigma\right)$ where the common dispersion matrix Σ is unknown. Discuss the procedure to test the hypothesis $H_0: \mu^{(1)} = \mu^{(2)}$ using Hotelling's T^2 statistic. In what way the ordinary sign test (ii)

samples? Explain.

3 (Sem-6/CBCS) STA HC 2/G 7 8 DIS OH ATE 1208 Contd.

a () o m nd let () vector.	(ii)	State any two properties of multivariate normal distribution. 2 Derive the bivariate normal density as a particular case of multivariate normal distribution. 8
(g)		Let $X \sim N_3\left(\mu, \Sigma\right)$. Find the distribution of 5
(h) be a	Desi testi pour	$\begin{pmatrix} X_1 - X_2 \\ X_2 - X_3 \end{pmatrix}$
$\begin{pmatrix} a_{0} & A \\ b_{1} & a_{1} \\ \end{pmatrix}$ $\begin{pmatrix} a_{1} & b_{2} \\ a_{2} \end{pmatrix}$ be		Derive the formula for Multiple correlation coefficient for a trivariate distribution. 5
		Explain the distribution free method. 3
known. known. est the using	lhu e	Derive the moment generating function of a bivariate normal distribution with usual parameters. 7
	ary si for	$\frac{1}{6} \frac{1}{6} \frac{1}$
(Sem - 6/CBCS) STA HC 2/G 8 012 0H AT2 (2080) 1500 2		

3

\$

