Total number of printed pages-11

3 (Sem-2/CBCS) MAT HC 1

2022

MATHEMATICS

(Honours) Paper : MAT-HC-2016

(Real Analysis)

Full Marks : 80

Time : Three hours

The figures in the margin indicate full marks for the questions.

1. Answer **any ten** questions :

1×10=10

(a) Find the infimum of the set

$$1 - \frac{(-1)^n}{n} : n \in \mathbb{N}$$

(b) If A and B are two bounded subsets of \mathbb{R} , then which one of the following is and true?

(i) $sup(A \cup B) = sup\{sup A, sup B\}$

(ii) $sup(A \cup B) = sup A + sup B$

Contd.

(iii) $sup(A \cup B) = sup A \cdot sup B$

(iv) $sup(A \cup B) = sup A \cup sup B$

- (c) There does not exist a rational number x such that $x^2 = 2$. (Write True or False)
- (d) The set Q of rational numbers is uncountable. (Write True or False)

(e) If
$$I_n = \left(0, \frac{1}{n}\right)$$
 for $n \in \mathbb{N}$, then $\bigcap_{n=1}^{\infty} I_n = 2$

(f) The convergence of $\{|x_n|\}$ imply the convergence of $\{x_n\}$. (Write True or False)

Answer any tan questions :

(g) What are the limit points of the sequence

 $\{x_n\}$, where $x_n = 2 + (-1)^n$, $n \in \mathbb{N}$?

(h) If $\{x_n\}$ is an unbounded sequence, then there exists a properly divergent subsequence. (Write True or False)

(i) A convergent sequence of real numbers is a Cauchy sequence. (Write True or False)

3 (Sem-2/CBCS) MAT HC 1/G 2

(j) If 0 < a < 1 then $\lim_{n \to \infty} a^n = ?$ (k) The positive term series $\sum \frac{1}{n^p}$ is convergent if and only if (i) p > 0(*ii*) p > 1(iii) 0(iv) $p \leq 1$ (Write correct one) Define conditionally convergent of a (1) series. Let x and w be (m) If $\{x_n\}$ is a convergent monotone sequence and the series $\sum_{n=1}^{\infty} y_n$ is convergent, then the series $\sum_{n=1}^{\infty} x_n y_n$ is also convergent. (Write True or False)

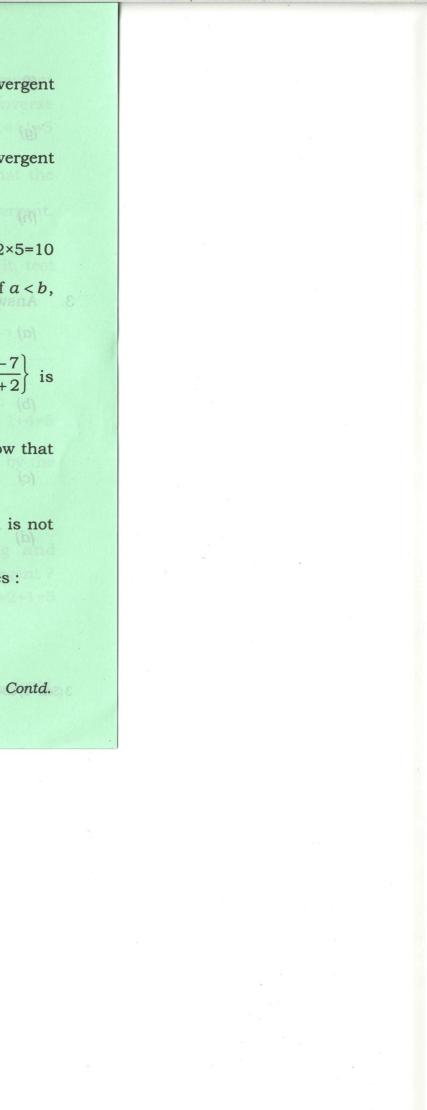
3 (Sem-2/CBCS) MAT HC 1/G 3

OLI OH TAM (200) Contd.



(n) Consider the series $\sum_{n=1}^{\infty} -\frac{1}{n!}$ where m and p are real numbers under which of the following conditions does the above series convergent ? (i) m > 1(ii) 0 < m < 1 and p > 12. (iii) $0 \le m \le 1$ and $0 \le p \le 1$ (iv) m=1 and p>1(o) Let $\{x_n\}$ and $\{y_n\}$ be sequences of real numbers defined by $x_1 = 1$, $y_1 = \frac{1}{2}$, $x_{n+1} = \frac{x_n + y_n}{2}$ and $y_{n+1} = \sqrt{x_n y_n} \quad \forall n \in \mathbb{N}$ then which one of the following is true? (i) $\{x_n\}$ is convergent, but $\{y_n\}$ is not convergent (ii) $\{x_n\}$ is not convergent, but $\{y_n\}$ is convergent 3 (Sem-2/CBCS) MAT HC 1/G 4 3 (Sem-2/CBCS) MAT HC 1/G 5

(iii) Both $\{x_n\}$ and $\{y_n\}$ are convergent and $\lim_{n\to\infty} x_n > \lim_{n\to\infty} y_n$ (iv) Both $\{x_n\}$ and $\{y_n\}$ are convergent and $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$ Answer any five parts : 2×5=10 (a) If a and b are real numbers and if a < b, then show that $a < \frac{1}{2}(a+b) < b$. (b) Show that the sequence $\left\{\frac{2n-7}{3n+2}\right\}$ is bounded. (c) If $\{x_n\}$ converges in \mathbb{R} , then show that $\lim_{n\to\infty}x_n=0$ (d) Show that the series 1+2+3+...., is not convergent. (e) Test the convergence of the series : $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$



- (f) State Cauchy's integral test of convergence.
- (g) State the completeness property of \mathbb{R} and

find the $\sup\left\{\frac{1}{n}:n\in\mathbb{N}\right\}$.

- (h) Does the Nested Interval theorem hold for open intervals ? Justify with a counter example.
- Answer any four parts : 3.

5×4=20

- (a) If x and y are real numbers with x < y, then prove that there exists a rational number r such that x < r < y.
- (b) Show that a convergent sequence of real numbers is bounded.
- (c) Prove that $\lim_{n\to\infty} \left(n^{\frac{1}{n}}\right) = 1$.
- (d) $\{x_n\}$ be a sequence of real numbers that converges to x and suppose that $x_n \ge 0$. Show that the sequence $\{\sqrt{x_n}\}$ of positive square roots converges and $\lim_{n\to\infty}\sqrt{x_n}=\sqrt{x}.$

3 (Sem-2/CBCS) MAT HC 1/G 6

- Show that every absolutely convergent (e) series is convergent. Is the converse true ? Justify. 4+1=5
- Using comparison test, show that the (f)

series $\sum \left(\sqrt{n^4 + 1} - \sqrt{n^4 - 1} \right)$ is convergent.

State Cauchy's root test. Using it, test (g)the convergence of the series

 $\left(\frac{2^2}{1^2} - \frac{2}{1}\right)^{-1} + \left(\frac{3^3}{2^3} - \frac{3}{2}\right)^{-2} + \left(\frac{4^4}{3^4} - \frac{4}{3}\right)^{-3} + \dots$

1+4=5

(h) Show that the sequence defined by the recursion formula

 $u_{n+1} = \sqrt{3u_n}, \ u_1 = 1$

is monotonically increasing and bounded. Is the sequence convergent? 2+2+1=5

3 (Sem-2/CBCS) MAT HC 1/G 7 Contd.

4. Answer **any four** parts : 10×4=40

(a) Show that the sequence
$$\left\{ \left(1 + \frac{1}{n}\right)^n \right\}$$
 is

convergent and $\lim_{n \to \infty} \left(1 \right)$ = e which lies between 2 and 3.

(b) (i) Let $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ are sequences of real numbers such that $x_n \leq y_n \leq z_n$ for all $n \in \mathbb{N}$ and $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n \, .$

> Show that $\{y_n\}$ is convergent and $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = \lim_{n\to\infty} z_n$ 5

(ii) What is an alternating series ? State Leibnitz's test for alternating series. Prove that the but gries $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots \infty$ is a conditionally series convergent series. 1+1+3=5 (c) Test the convergence of the series $1 + a + a^2 + \dots + a^n + \dots$

3 (Sem-2/CBCS) MAT HC 1/G 8

Using Cauchy's condensation test, (d) (i)discuss the convergence of the

series
$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$$
 5

Define Cauchy sequence of real (ii) numbers. Show that the sequence

$$\left\{\frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}\right\} \quad \text{is} \quad a$$

Cauchy sequence.

1+4=5

- Show that a convergent sequence (e) (i) of real numbers is a Cauchy 5 sequence.
 - (ii) Using Cauchy's general principle of convergence, show that the

sequence $\left\{1+\frac{1}{2}+\dots+\frac{1}{n}\right\}$ is not 5 convergent.

Prove that every monotonically (f) (i) increasing sequence which is bounded above converges to its least upper bound. (a) (b) 5

3 (Sem-2/CBCS) MAT HC 1/G

9 OF THE TAM ROAD Contd.

 (ii) Show that the limit if exists of a convergent sequence is unique. 5 (g) State and prove p-series. 	(ii) Test the convergence of the series $x^{2} + \frac{2^{2}}{3.4}x^{4} + \frac{2^{2}.4^{2}}{3.4.5.6}x^{6} + \frac{2^{2}.4^{2}.6^{2}}{3.4.5.6.7.8}x^{8} + \dots (x > 0)$
(h) (i) Test the convergence of the series $x + \frac{3}{5}x^2 + \frac{8}{10}x^3 + \dots + \frac{n^2 - 1}{n^2 + 1}x^n + \dots (x > 0)$	5
(ii) If $\{x_n\}$ is a bounded increasing sequence then show that	
(i) (i) Show that a bounded sequence of real numbers has a convergent subsequence. 5	
 (ii) State and prove Nested Interval theorem. 5 (j) (i) Show that Cauchy sequence of real numbers is bounded. 5 	
3 (Sem-2/CBCS) MAT HC 1/G 10 OLI OH TAM (2080) S-ms2) S	3 (Sem-2/CBCS) MAT HC 1/G 11 3000

\$

