COMPUTER SCIENCE

(Honours)
Paper : CSC-HC-2026
(Discrete Structures)
Full Marks : 80
Time : Three hours

The figures in the margin indicate

 full marks for the questions.1. Answer the following as directed : (any ten) $1 \times 10=10$
(a) What do you mean by 'cut vertex'?
(b) Define recursive of a function.
(c) What are predicates ?
(d) Define a partially-ordered relation.
(e) Every connected graph has maximum two spanning tree. (State true or false)
(f)
Every tree with two or more vertices is
AOH Ochromatic. (Fill in the blank)
(g) Define Pigeonhole principle.
(h) Define a Binary tree.
(i) What is an antisymmetric relation ?
(j) Define the Big-O notation.
(k) Translate the following statement into mathematical logic :
"Some real numbers are rational"
(l) What is countably infinite set ?
(m) How many vertices are there in a tree with 20 edges ?
(n) Explain what it means for a function to be $0(1)$.
(0) Explain what it means for a function to be $\Omega(1)$.
2. Answer any five of the following : $2 \times 5=10$
(a) In how many different ways, the letters of the word "GUWAHATI" can be arranged in a row if
(i) the two ' A 's are together ?
(ii) the two 'A's are not together ?
(b) Define minimal spanning tree.
(c) What is the 'nullity' and 'rank' of a complete graph of n-vertices?
(d) Show that $x^{2}+4 x+17$ is $0\left(x^{3}\right)$ but that x^{3} is not $0\left(x^{2}+4 x+17\right)$.
(e) Define the Recurrence tree. How does the tree method help Recurrence relations?
(f) Define the Quantifier in a logic.
(g) Derive the Recurrence relation for the following positive integers :
$3,6,12,24,48, \ldots$
(h) Show that the following logical expression are equivalent $P v \sim Q \equiv[(P \wedge Q) \vee(P \wedge \sim Q) \vee(\sim P \wedge \sim Q)]$

3 (Sem-2/CBCS) CSC HC $2 / \mathrm{G}$
3
Contd.
3. Answer any four of the following: $5 \times 4=20$
(a) Use the principle of mathematical induction to verify that

$$
1+3+3^{2}+\ldots \ldots+3^{n-1}=\frac{3^{n}-1}{2}
$$

(b) Define equivalence relation. If relation

$$
R=\{(1,1),(2,3),(3,2),(2,2),(1,3),(3,1),(3,3)\}
$$

on set $A=\{1,2,3\}$, determine whether R is a equivalence relation or not ?
(c) What are isomorphism of two graphs? Show that the two graphs in fig. 1 is not isomorphic.

Fig. 1
(d) Solve the 1 st order linear recurrence for $a_{n+1}=3 a_{n}+4, \quad a_{1}=2$.

3 (Sem-2/CBCS) CSC HC $2 / \mathrm{G}$
(e) Determine whether the following argument is valid or not
(i) $p \rightarrow q$
$\frac{\sim p}{\sim q}$
(ii)

$$
\frac{\sim p \vee r}{q \vee r}
$$

(f) Let k be a positive integer, show that $1^{k}+2^{k}+\ldots . . n^{k}$ is $0\left(n^{k+1}\right)$
(g) Define the following terms in a graph with diagrams : Path, Walk, Cycle, Adjacency matrix degree of a vertex.
(h) Determine whether each of the following relations are reflexive, symmetric and transitive.
(i) $R=\{(x, y): 3 x-y=0\}$ in the set $A=\{1,2,3 \ldots . .12,13\}$
(ii) $R=\{(x, y): y$ is divisible by $x\}$ in (2) mo set $A=\{1,2,3,4,5,6\}$

Contd.
4. Answer any four of the following : $10 \times 4=40$
(a) (i) What is Hamiltonian circuit of a connected graph ? Find the Hamiltonian circuit using Backtracking approach for the given graph :

(ii) Define the following terms with an example for each planar graph : Incidence matrix, complement of a graph, pendant vertex and Euler graph.
(b) (i) When is a statement formula said to be tautology?

Show that $[(p \rightarrow q) \wedge p] \rightarrow q$ is a tautology.
(ii) What do you mean by normal form in logic ? Express $p \rightarrow(q \wedge r)$ in
(i) Disjunctive normal form (dnf)
(ii) Conjunctive normal form (cnf)

3 (Sem-2/CBCS) CSC HC 2/G
6
(c) (i) Find the adjacency matrix for the following two graph and determine that they are isomorphic :

(ii) Consider the following $p: x$ is even $q: x$ is divisible by 4 Write the following statements in logical form :
(a) x is even or x is divisible by 4
(b) x is even iff it is divisible by 4
(c) x is neither even or divisible by 4
(d) if x is even, then it is divisible by 4 of the first n-odd positive integer. 5

3 (Sem- $2 /$ CBCS) CSC HC $2 / \mathrm{G}$ 7

Contd.
(ii) Show that for the recurrence equation,

$$
\begin{array}{ll}
T(n)=1 & , n=1 \\
T(n)=2 T(n-1), & n>1 \text { is } 0\left(2^{n}\right)
\end{array}
$$

(e) (i) Define the 'set difference' and symmetric difference' of two sets (by using Venn diagram representation)
(ii) If $A=\{1,2,3\}, B=\{5,6\}, C=\{2,3\}$, then find
(i) $(C \times B)-(A \times B)$
(ii) $A \oplus B \oplus C$
(f)
(i) What is the difference between permutation and combination?
(ii) A student buys two apples, four oranges and three mangoes from a person who had five apples, seven person who had five apples, seven oranges and six mangoes. How many choices does the student have?
(g) (i) Construct the truth tables for the following :
(i) $\sim p \vee q \rightarrow \sim q$
(ii) $\sim(p \wedge q) \vee \sim(q \leftrightarrow p)$
(ii) Show that the following pairs of propositions are logically equivalent:
(i) $\sim(p \wedge q)$ and $\sim p \vee \sim q$
(ii) $p \vee(p \wedge q)$ and q

(h) (i) Show that

$$
1^{2}+2^{2}+3^{2}+\ldots .+n^{2}=\frac{n(n+1)(2 n+1)}{6}, n \geq 1
$$

by mathematical induction.
10 slqio (ii) Find the first four terms of each of ajes owd not nothe following recurrence relations :
(i) $a_{k}=2 a_{k-1}+k$, for all integers $k \geq 2, a_{1}=1$

3 (Sem-2/CBCS) CSC HC $2 / \mathrm{G} 9$ Contd
(ii) $a_{k}=k\left(a_{k-1}\right)^{2}$ for all integers $k \geq 1, a_{0}=1$
(i) (i) Prove that a tree with n-vertices has $(n-1)$ edges.
(ii) From the following weighted graph, find the minimum distance between vertex V_{1} and V_{4}.

$5+5=10$
(j) (i) State and prove the principle of inclusion and exclusion for two sets A and B.

3 (Sem-2/CBCS) CSC HC $2 / \mathrm{G}$
(ii) Among a group of students, 30 study physics, 35 study chemistry and 20 study maths. If 6 of these students study physics and chemistry, 8 students study chemistry and mathematics, 5 study physics and mathematics and 3 study physics, chemistry and mathematics. Find the number of students.

