52 (2) DSAL 2.3

2015

DATA STRUCTURE AND ALGORITHM

Paper: 2.3

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $1 \times 7 = 7$
 - (a) The proper choice of data structure allows major improvement in program efficiency. (State true or false)
 - (b) In linked list, the logical order of elements is same as their physical arrangement. (State true or false)
 - (c) State an application of queue.
 - (d) Recursion uses ———— as an internal data structure. (Fill in the blank)

Contd.

- (e) What is the number of nodes in a complete binary tree of depth 'K'?
- (f) Does binary search perform efficiently on a linked list?
- Time complexity of insertion sort algorithm in the best case is -. (Fill in the blank)
- Answer any four questions.
 - (a) What are the limitations of arrays?
 - (b) Consider the following declaration int arr [10] [15];

Assume that an integer needs 4 bytes and base address of arr is 100, find the address of the element arr [5] [7].

 $2 \times 4 = 8$

- What is a linked list?
- Define stack with a suitable example.
- (e) What is worst case analysis?
- What is meant by external sorting?

- Answer any three questions.
- $5 \times 3 = 15$
- Write an algorithm to find sum of odd elements of a two-dimensional array.
- Write an algorithm to insert a node at the end of a noncircular singly linked list.
- Compare the process of deleting an element from a singly linked list with the process of deleting an element form an array structure.
- Write an algorithm to convert an expression from infix to postfix.
- The order of nodes of a Binary tree in preorder and inorder are as under:

Preorder: ABDGHCEFIKJ inorder: BGHDAECIKFJ

Draw the Corresponding Binary tree.

- 10×3=30 Answer any three questions.
 - Assuming a queue representation through doubly linked list, write algorithm for addition and deletion of an element in a queue.

- (b) Write non-recursive algorithms for inorder and postorder traversal of Binary tree.
- (c) Write an algorithm to delete a node from Binary Search tree.
- (d) Write an algorithm to implement quick sort technique and discuss about its efficiencies.
- (e) Show the steps of sorting the following sequence in ascending order using heap sort method.

7, 2, 9, 5, 3, 6.