Total No. of printed pages = 10 diedw deed 2

rd navig nonbol 3 (Sem 3) PHY M1

2015

PHYSICS bas nationall

Answer any me (rojam) elowing questions:

Paper : 3.1

(Mathematical Methods-III and Electrostatics)

Full Marks - 60

Time - Three hours

The figures in the margin indicate full marks for the questions.

GROUP-A (Mathematical Physics)

Marks: 25

- 1. Answer the following questions: $1 \times 3=3$
 - (a) Define rank of a matrix.
 - (b) When a symmetric matrix is said to be Hermitian?
 - (c) Find adj A if $A = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$

IM YH9 [Turn over

2. Check whether the total angular momentum matrix for an electron given by

$$J^2 = (3\hbar^2/4) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ is }$$

Hermitian and unitary.

2

- 3. Answer any two of the following questions: $2 \times 5 = 10$
 - (a) (i) If $A^2 + A I = O$ find A^{-1} .
 - (ii) Show that the inverse of a matrix is unique. _ which the

Time To Three hours

- If A, B are two square, symmetric matrices of dimensions n×n find the condition when the product AB is symmetric.
 - (iii) Find the rank of the matrix

$$\begin{pmatrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2 \end{pmatrix}$$

(b) (i) Express the following quadratic form as product of matrices

$$ax^{2} + by^{2} + 2hxy$$
 2

- (ii) What is an idempotent matrix? 1
- (iii) Find the value of b if the matrix

$$\begin{pmatrix} 0 & 1 & b \\ -1 & 0 & 4a \\ 2a & 2b & 0 \end{pmatrix}$$

is skew-symmetric.

- (c) (i) Show how centrifugal force and coriolis force appear in the description of motion of a particle in the frame fixed with respect to rotating earth.
- (ii) "Sum of finite rotations performed on a rigid body depends on the order of $(\cdot, \theta) \land + (\cdot, \theta)$ rotations." $(\cdot, \theta) \land \cdot$ and world

What operation on two transformation matrices A, B are linked with the statement?

- 4. Answer either [(a) and (b)] or [(c) and (d)].
 - (a) (i) Given the matrices

$$A = \begin{pmatrix} 0 & 2 & 3 \\ 3 & -1 & 1 \\ 4 & 2 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad C = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

and the equation AX = C. Solve for x, y, z by matrix method.

(ii) Test whether the matrix

$$\begin{pmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{pmatrix}$$

is orthogonal or not.

(b) (i) Consider the following transformation in three dimensions (1) 1+2=3

$$x' = x \cos \theta + y \sin \theta$$

$$y' = -x\sin\theta + y\cos\theta$$

$$z' = z$$

Write down the transformation matrix A. Show that $A(\theta_1 + \theta_2) = A(\theta_1) + A(\theta_2)$.

- (ii) Find the inverse of the matrix $\begin{pmatrix} 2 & -3 \\ 4 & 6 \end{pmatrix}$
 - (c) (i) Test whether the following matrices are diagonalizable: 11/2+11/2=3

$$A = \begin{pmatrix} 1 & 1+i \\ 1-i & 0 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$$

(ii) State and explain Cayley - Hamilton theorm.

(d) (i) Calculate the eigen values of M, M⁻¹

where
$$M = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & 2 \end{pmatrix}$$
 2+1=3

(ii) If $A = \begin{pmatrix} 0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0 \end{pmatrix}$ and I is a unit

when a great matrix, show that

$$I + A = (I - A) \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

GROUP-B

pend to armst mi (Electrostatics) to tinu (b)

Marks: 35 10 10 almu

5. Choose the correct option: 1×4=4

(a) The induced surface charge q' is related to charge q as (where K = dielectric constant)

(i)
$$q' = q/k$$

(ii)
$$q' = q$$

(iii)
$$q' = q \left(1 - \frac{1}{K}\right)$$
 (iv) $q' = q(1 - K)$

- (b) The electric potential due to a quadrupole at distance far off from its centre varies as
 - (i) 1/r

- (iii) $1/r^3$ (iv) $1/r^4$
- (c) Electric field at a point close to the surface of a charged conductor having charge density σ is
 - (i) $\sigma/4 \in_0$ (ii) σ/\in_0

- (iii) $\sigma/2 \in_0$ (iv) $\sigma/3 \in_0$
- (d) Unit of electric potential in terms of base units of SI is

 - (i) $\text{Kg m}^2\text{S}^{-1}$ (ii) $\text{Kg m}^2\text{S}^{-1}\text{A}^{-1}$
 - (iii) Kg m²S⁻²
- (iv) Kg $m^2S^{-3}A^{-1}$

 $3 \times 2 = 6$

- 6. Answer the following questions:
 - (a) Two charges $q_1=2\mu C$ and $q_2=3\mu C$ are placed at (0, 0, 4) and (0, 0, -4) respectively. Find the locus of points where potential is zero.

Application of the development of the second

What is the net electric field at the point P due to the two infinitely long charged sheets as shown in the figure.

- (b) (i) Can the potential have a maximum or minimum in free space ? Justify. 11/2 the mechanical force per unit area on the
 - (ii) Show mathematically that $\nabla \phi$ is perpendicular to the equipotential surface $\phi(x, y, z) = constant.$ 11/2
- 7. Answer either (a) or (b)
- (a) (i) Compute the curl and divergence of electric field given by

$$\vec{E}(x, y, z) = (x^2 + z^2 + 5)\hat{x} + (y^2 + x^2 - 9z)\hat{y} + (z^2 + y^2)\hat{z}.$$

Is the field conservative ? 1+1+1=3

(ii) For the electric field $\vec{E} = (Kx^{1/2})\hat{x}$

where K is a constant, compute the electric flux through the face of the cube region depicted in the figure. 2

- (b) (i) Using Gauss's law find an expression for the mechanical force per unit area on the surface of a charged conductor. 2½
- (ii) Derive an expression for the equilibrium of an electrified soap bubble. 2½

8. Answer any two questions:

(a) (i) Four charges $q_1 = q_2 = -q_3 = -q_4 = q$ are arranged at points (0, a), (0, -a), (a, 0) and (-a, 0) in x-y plane. What is the electrostatic energy needed to compose such an arrangement, bringing the charges in from infinity? Also find the electrostatic potential in x-y plane.

2+3=5

- (ii) Show that an arbitrary distribution of charges is equivalent to combination of monopole, dipole, quadrupole etc. 5
- (b) (i) Two concentric spherical shells of radii a and b (b>a) are charged to potentials
 V₁ and V₂ respectively. Use Laplace's equation to calculate the electric potential in the region between the shells.
 - (ii) Use Poisson's equation to find the charge density in a region where the potential function is

each of the charges.

V= a + 4b
$$(x^2+y^2)$$
 - c log $(x^2+y^2)^{\frac{3}{2}}$.

(c) (i) What is meant by dielectric polarisation? Show how $\vec{E}, \vec{D}, \vec{P}$ are related for an isotropic dielectric medium. Is water molecule a polar molecule? If so, why?

(ii) Using Clausius-Mosotti relation show how can the atomic radius be determined from dielectic constant.

(9)

- (d) (i) Determine the electric potential at a point on the axis of a charged disc of radius a and surface charge density o. Show that the disc may be regarded as a point charge for far off points. 3+2=5
- (ii) Two equal point charges q are placed at equal distance b from the centre of a grounded conducting sphere of radius a where b<a. Calculate the force acting on 5 each of the charges.

dollain la a reman where the pomnial