was with the second of the second of the was a war was a second of the s

purely inductive or capacitive circuit ?

PHYSICS and shirt (1)

(Major) of the test of the tes

Paper: 3.2

(Current Electricity and Magnetostatics)

Full Marks - 60

Time - Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $1 \times 7 = 7$
 - (a) Write down the Ohm's law that relates the conductivity, current density and electric field.
 - (b) Two inductances of co-efficient of self induction L₁ and L₂ are joined in series. What is the net co-efficient of self induction of the combination?
- (c) What do you mean by the time constant in series R-C circuit?

[Turn over

- (d) Why no power is dissipated if a voltage of sinusoidal waveform is applied across a purely inductive or capacitive circuit?
- (e) What is copper losses in transformer?
- (f) Write down the Biot-Savart law.
- (g) What is magnetic vector potential?
- Answer the following questions: $2 \times 4 = 8$
 - (Carrent Electricity and Magnetostatics) (a) Set up the e.m.f equation of series LCR a.c circuit.
 - (b) In a certain thermocouple $E=a\theta + b\theta^2$, where θ^{o} C is the temperature of the hot junction, the cold junction being at 0°C, a = 10 microvolts /

°C and $b = -\frac{1}{40}$ microvolt/°C. Find the neutral temperature and the temperature of inversion.

- (c) Explain the differences between a 'dead-beat galvanometer' and 'ballistic galvanometer'.
- (d) Draw the circuit diagram of Anderson's bridge for the measurement of co-efficient of self induction.

- 3. Answer any three of the following questions: $5 \times 3 = 15$
 - (a) Establish that $\nabla \cdot \vec{B} = 0$
 - (b) Write a short note on Rotating magnetic field.
- (c) An alternating voltage of 220 volts and 50 Hz is applied to a circuit which contains an inductance of 0.2 henry and resistance 10 ohms in series. Determine the potential difference across the resistance and the inductance.
 - (d) The e.m.f of a thermocouple, one junction of which is kept at 0°C, is given by E=bt+ct². Find the neutral temperature and the Peltier and Thomson co-efficient.
- 4. (a) Deduce an expression for self inductance of a long solenoid carrying current.
- (b) An inductor (L = 20 mH), a resistor (R = 100 Ω) and a cell (E = 10V) are connected in series. Find the time elapsed before the current reaches 99% of the maximum value. [ln 100=4.6]

(c) Establish the relation $\pi_2 - \pi_1 = \frac{\pi_1}{T_1} (T_2 - T_1)$

where π_1 and π_2 are Peltier co-efficients.

3

Or

Why Wheatstone bridge is not suitable for measurement of very low resistance?

Describe with circuit diagram how low resistance can be measured using Kelvin's Double Bridge.

2+8=10

- 5. (a) In a region the force $\vec{F} = q(\vec{v} \times \vec{B})$ on a charge q is zero. What conclusions can you draw from this?
 - (b) Using the Biot-Savart law, obtain an expression for the magnetic field due to a long straight conductor carrying steady current.

in sometonic is not to or or sould in the A

Define magnetic scalar potential. Obtain an expression for the magnetic scalar potential and hence magnetic field near a current carrying loop. 2+6+2=10

6. (a) Derive an expression to show the growth of electric current in a circuit with resistance and self-inductance.

(b) What is meant by resonance in an a.c circuit? In an a.c circuit containing L, C and R in series, find the condition under which the resonance is obtained.

2+3=5

Or

What is meant by mutual inductance? Describe with circuit diagram how the mutual inductance can be measured using Ballistic galvanometer. 2+8=10